If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-12x=90
We move all terms to the left:
14x^2-12x-(90)=0
a = 14; b = -12; c = -90;
Δ = b2-4ac
Δ = -122-4·14·(-90)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-72}{2*14}=\frac{-60}{28} =-2+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+72}{2*14}=\frac{84}{28} =3 $
| 1.4y=9.8 | | 28+12x=8x-28 | | -(2+6n)=-5n+3 | | 3x-5=9x-41 | | -7x-(4+4)=5-(-3x) | | (4x+5)=(4x-5) | | 3b=b-8 | | -3h-4=h | | 6x-18=-7x-(-11) | | -7u-10=-8u | | 4(5k+3)+3(4k-4)=-48 | | 10.3f=10.2f-0.08 | | 10x-3=2x+15 | | -10+13c=8c-5 | | 7=-y+6 | | -7-16p=-9p | | -2.7t=-1.6+8.69 | | 2z-20=16-3z-13z | | -8+6b=4+4b | | 20n-18=18n | | (x+2)2+(x)2=394 | | x/4+6=6 | | 10x(2Y-1)=118 | | 3x-3+4-7x-3=16 | | 3x-10=x-38 | | 3.5c-13.29+8.6c=11.8c-16.77 | | a/4-2=28 | | 360=60n | | 2x+x/2=25 | | -17-8u=13-6u | | -23.14+d=-33.14 | | 4+6h=4h |